PacBi•

Sequencing by binding (SBB®) delivers unprecedented NGS accuracy

June 8, 2022 | AGBT Jonas Korlach | CSO

Safe harbor statement

All statements in this presentation (and any accompanying oral presentation) that are not historical are forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, Section 21E of the Securities Exchange Act of 1934, as amended, and the U.S. Private Securities Litigation Reform Act of 1995, including statements that generally relate to future events or our future financial or operating performance, future applications and availability, release dates, uses, accuracy, advantages, or quality or performance of, or benefits or expected benefits of using, our products or technologies, and the suitability or utility of our products or technologies for particular applications or projects. Such statements are based on management's current beliefs, estimates, assumptions, and projections and on information available to management as of the date of this presentation. Forward-looking statements include, among other things, statements regarding predictions, estimates, plans, and expectations regarding the performance, applications, commercial availability, release dates, uses, accuracy, advantages, quality, performance, and benefits or expected benefits of our products or technologies, and the suitability or utility of our products or technologies for particular applications or projects, including in connection with SBB products, product candidates and technologies. You should not place undue reliance on forward-looking statements because they involve known and unknown risks, uncertainties, changes in circumstances and other factors that are, in some cases, beyond the Company's control and could cause actual results to differ materially from the information expressed or implied by forward- looking statements made in the presentation. Factors that could materially affect actual results can be found in our filings with the Securities and Exchange Commission, including our most recent reports on Forms 8-K, 10-K and 10-Q, and include those listed under the caption "Risk Factors." The Company undertakes no obligation to revise or update information in this presentation to reflect events or circumstances in the future, even if new information becomes available.

The last 18 months have been transformational for PacBio

Genomes

Epigenomes

Transcriptomes

Chromatin architecture & dynamics

Metagenomics

Gene therapy

SARS-CoV-2

Foundation for T2T, calling all variants

Simultaneous 5mC calling

MAS-Iso-Seq

Fiber-Seq/SAMOSA

Full-length 16S, complete MAGs

Complete AAV sequencing solution

HiFiViral

The last 18 months have been transformational for PacBio

Released new binding kits

Drove DNA input down >5×

Increased average yield >30%

Released new prep kits

Released automated protocols

Released HiFiViral kit

mabled 5mC calling on instrument

Released AAV workflow

Enabled demultiplex on instrument

Empowered high-throughput processing

Consolidated workflows and protocols

And much more...

Accuracy matters — it's the hallmark of who we are

Human genetics — **Neuroscience**

Human genetics — Immunology

Rare + inherited disease research

Plant + animal sciences

Infectious disease / microbiology

Potential for early-stage cancer screening

Potential for cancer recurrence monitoring

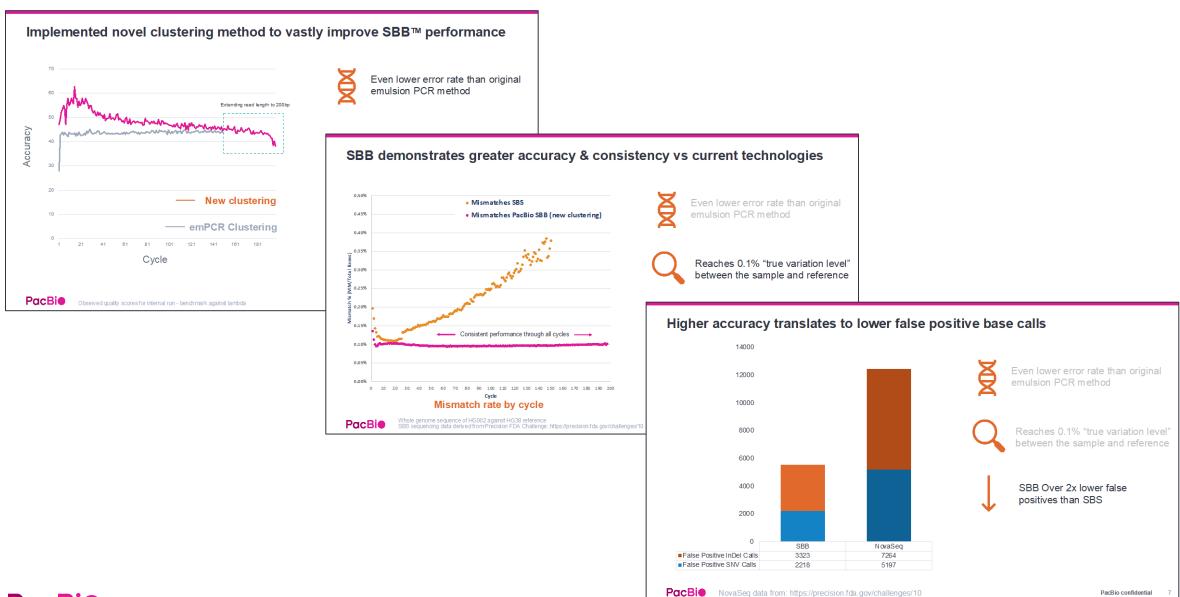
Enabling therapy selection

Targeted clinical panels

Potential for noninvasive prenatal screening

HiFi sequencing

Delivers long reads with the highest accuracy — even in hard-to-sequence regions



SBB sequencing

Promises significant accuracy improvements over conventional NGS approaches

Going beyond what we shared at JP Morgan

Sequencing by binding (SBB)

1

Technology

2

Benchmark

3

Application

Developing an innovative platform to house SBB


Novel and state-of-the-art inventions

4 core focus areas

140+ patents pending


~50 patents allowed/issued

Sequencing around the clock

>1500 runs completed in 2022 alone

Breakthrough short-read sequencing

Key design principles and goals

Mid- to high-throughput NGS platform

Optical and mechanical innovations

Scalable, flexible, and cost-optimized

Unparalleled accuracy from SBB

SBB is fundamentally designed to maximize accuracy

SBB chemistry separates interrogation and incorporation steps

Multiple optimization points increase accuracy and flexibility

Blocked 3' end

Interrogate
Flow nucleotides, image, wash

TACGAGT

Activate TACGAG →
Remove 3' RT ATGCTCAGT

Incorporate TACGAGT
Flow blocked nucleotides ATGCTCAGT

SBB advantages: Incorporates native nucleotides, produces unmodified DNA

No base modifications, no molecular scarring

Sequencing by synthesis (SBS)

Unblocked 3' end

Incorporate/ Interrogate

Cleavage

Sequencing by binding (SBB)

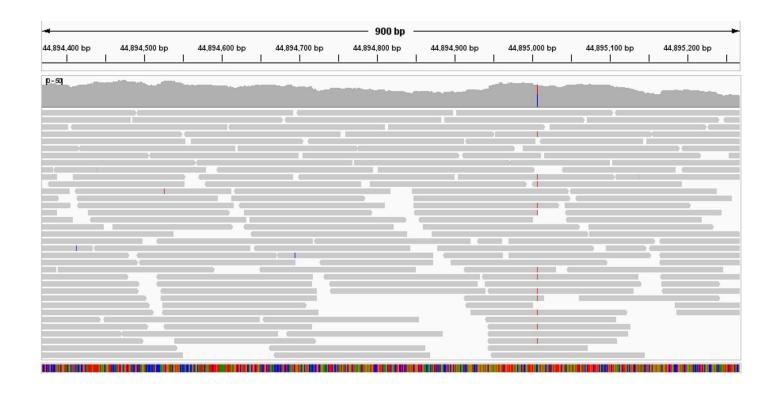
Blocked 3' end

Interrogate

Activate

Incorporate

Benefits of SBB over traditional short read NGS


>90% bases at Q40+

Low duplications rate

No index hopping

Sequence through difficult / repetitive regions

SBB offers near "perfect" reads



SBB offers best-in-class accuracy

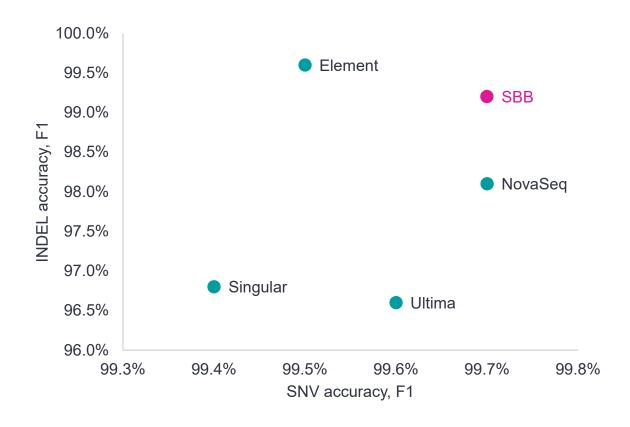
SBB error rates ~15× lower at any given cycle, between 1:10,000 to 1:100,000

The complete sequence of a human genome

Sergey Nurk1., Sergey Koren1., Arang Rhie1., Mikko Rautiainen1., Andrey V. Bzikadze2, Alla Mikheenko3, Mitchell R. Vollger⁴, Nicolas Altemose⁵, Lev Uralsky^{6,7}, Ariel Gershman⁸, Sergey Aganezov⁹, Savannah J. Hoyt¹⁰, Mark Diekhans¹¹, Glennis A. Logsdon⁴, Michael Alonge⁹, Stylianos E. Antonarakis¹², Matthew Borchers¹³, Gerard G. Bouffard¹⁴, Shelise Y. Brooks¹⁴, Gina V. Caldas¹⁵, Haoyu Chenq^{16,17}, Chen-Shan Chin¹⁸, William Chow¹⁹, Leonardo G. de Lima¹³, Philip C. Dishuck⁴, Richard Durbin²¹, Tatiana Dvorkina³, Ian T. Fiddes²², Giulio Formenti^{23,24}, Robert S. Fulton²⁵, Arkarachai Fungtammasan¹⁸, Erik Garrison^{11,26}, Patrick G.S. Grady¹⁰, Tina A. Graves-Lindsay²⁷, Ira M. Hall²⁸, Nancy F. Hansen²⁹, Gabrielle A. Hartley¹⁰, Marina Haukness¹¹, Kerstin Howe¹⁹, Michael W. Hunkapiller³⁰, Chirag Jain^{1,31}, Miten Jain¹¹, Erich D. Jarvis^{23,24}, Peter Kerpedjiev³², Melanie Kirsche⁹, Mikhail Kolmogorov³³, Jonas Korlach³⁰, Milinn Kremitzki²⁷, Heng Li^{16,17}, Valerie V. Maduro³⁴, Tobias Marschall³⁵, Ann M. McCartney¹, Jennifer McDaniel³⁶, Danny E. Miller^{4,37}, James C. Mullikin^{14,29}, Eugene W. Myers³⁸, Nathan D. Olson³⁶, Benedict Paten¹¹, Paul Peluso³⁰, Pavel A. Pevzner³³, David Porubsky⁴, Tamara Potapova¹³, Evgeny I. Rogaev^{6,7,39,40}, Jeffrey A. Rosenfeld⁴¹, Steven L. Salzberg^{9,42}, Valerie A. Schneider⁴³, Fritz J. Sedlazeck⁴⁴, Kishwar Shafin¹¹, Colin J. Shew²⁰, Alaina Shumate⁴², Yumi Sims¹⁹, Arian F. A. Smit⁴⁵, Daniela C. Soto²⁰, Ivan Sović^{30,46}, Jessica M. Storer⁴⁵, Aaron Streets^{5,47}, Beth A. Sullivan⁴⁸, Françoise Thibaud-Nissen⁴³, James Torrance¹⁹, Justin Wagner³⁶, Brian P. Walenz¹, Aaron Wenger³⁰, Jonathan M. D. Wood¹⁹, Chunlin Xiao⁴³, Stephanie M. Yan⁴⁹, Alice C. Young¹⁴, Samantha Zarate⁹, Urvashi Surti⁵⁰, Rajiv C. McCoy⁴⁹, Megan Y. Dennis²⁰, Ivan A. Alexandrov^{3,7,51}, Jennifer L. Gerton¹³, Rachel J. O'Neill¹⁰, Winston Timp^{8,42}, Justin M. Zook³⁶, Michael C. Schatz^{9,49}, Evan E. Eichler^{4,24,†}, Karen H. Miga^{11,†}, Adam M. Phillippy^{1,†}

SBB vs SBS empirical vs reported per-base Q score for CHM13

Uncalibrated SBB Q score correlates well with observed errors



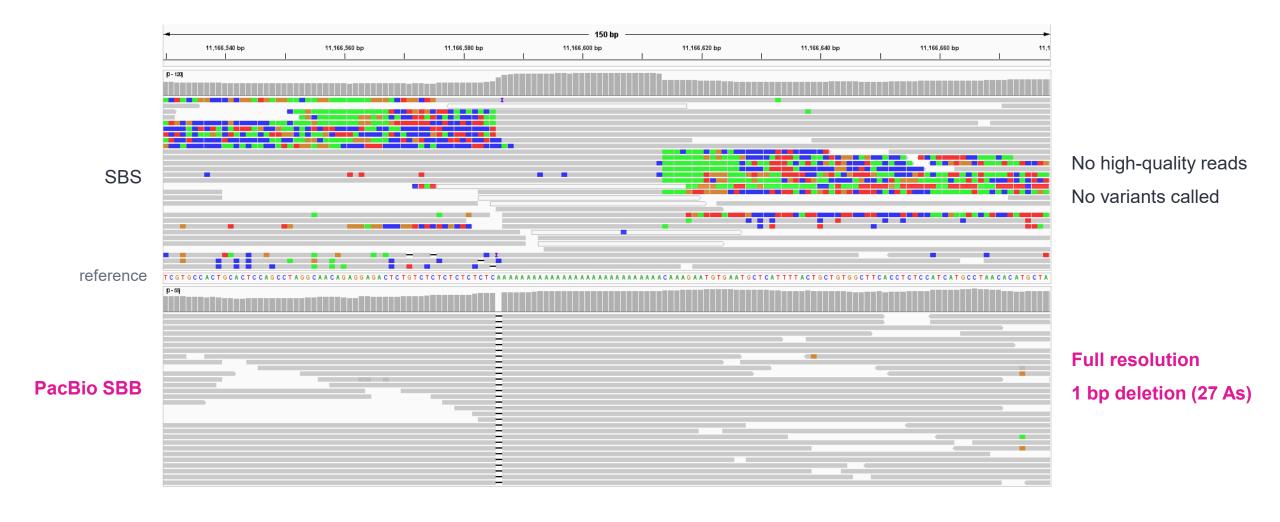
Excellent variant calling performance for SBB

		SBB	NovaSeq	Element	Ultima	Singular
SNV	Recall	99.6%	99.9%	99.1%	99.6%	99.2%
	Prec.	99.7%	99.5%	99.8%	99.6%	99.7%
	F1	99.7%	99.7%	99.5%	99.6%	99.4%
INDEL	Recall	98.9%	97.9%	99.3%	96.4%	96.4%
	Prec.	99.4%	98.4%	99.8%	96.8%	97.1%
	F1	99.2%	98.1%	99.6%	96.6%	96.8%

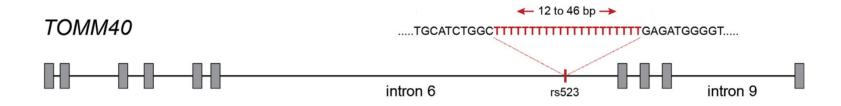
Expecting further improvements through variant caller training

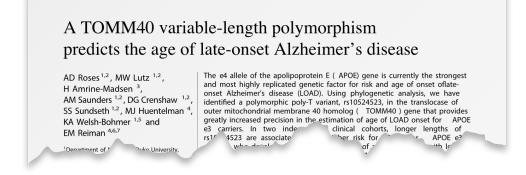
What does unprecedented accuracy look like?

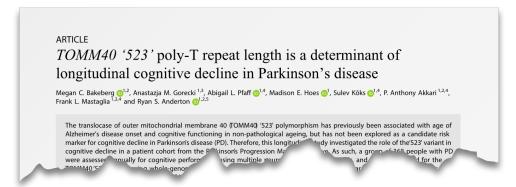
Low-complexity region (28 As in the reference)



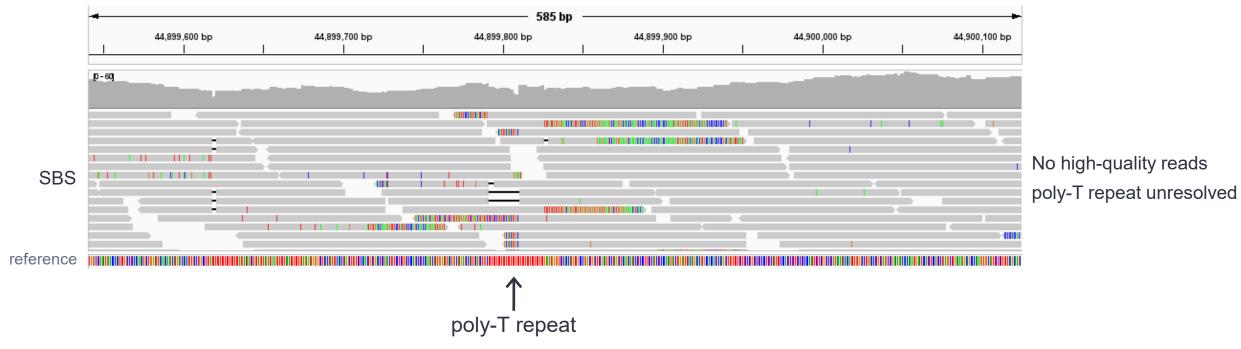
No high-quality reads


No variants called

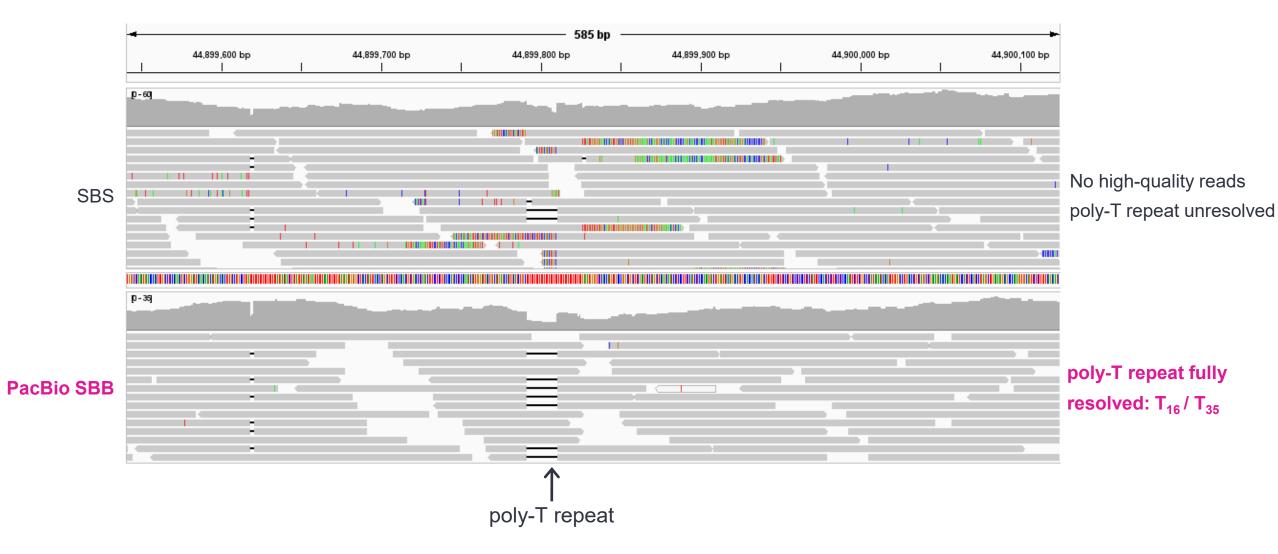

What does unprecedented accuracy look like?

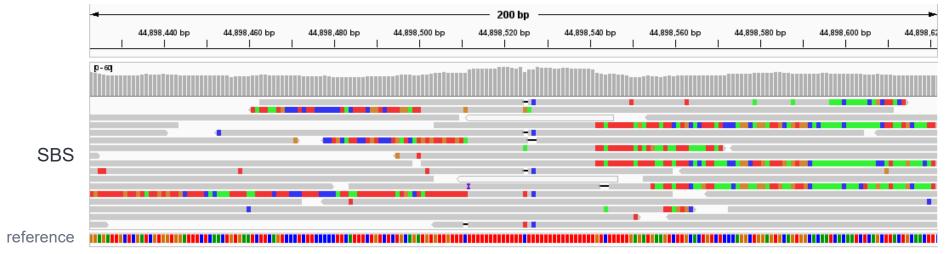

SBB cleanly sequences through 27 bp poly A (28 bp in the reference)

Example of a 'difficult' region – *TOMM40*

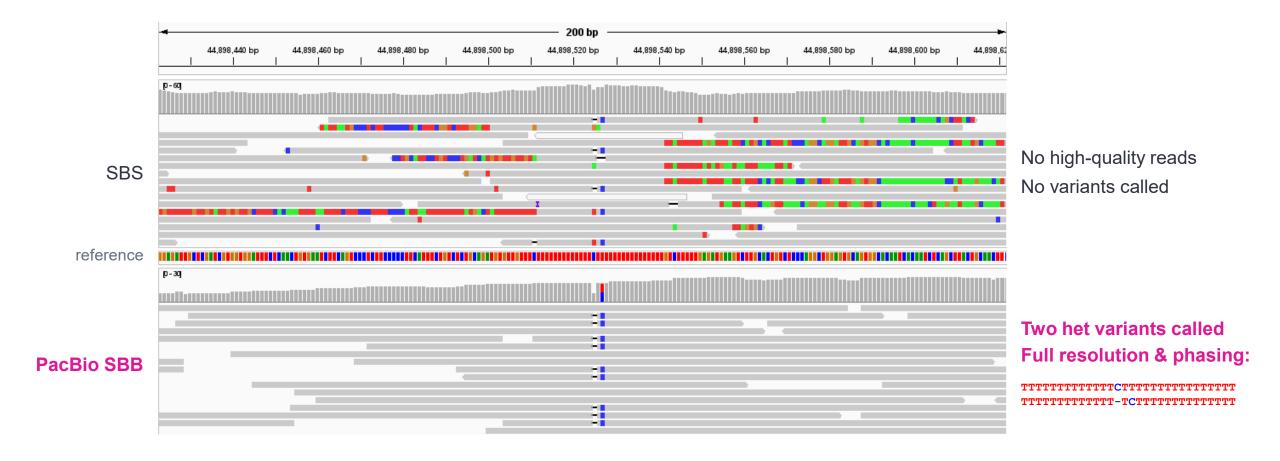


"Assay development for the TOMM40 '523' variant is generally considered to be difficult, as poly-T variants are challenging to sequence." 1

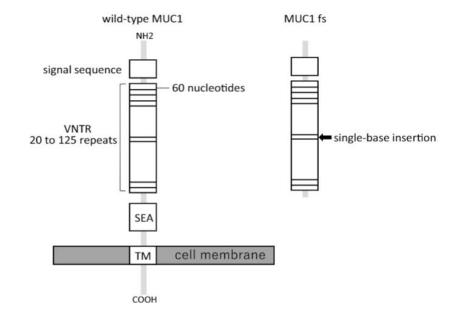

Example of a 'difficult' region – *TOMM40*

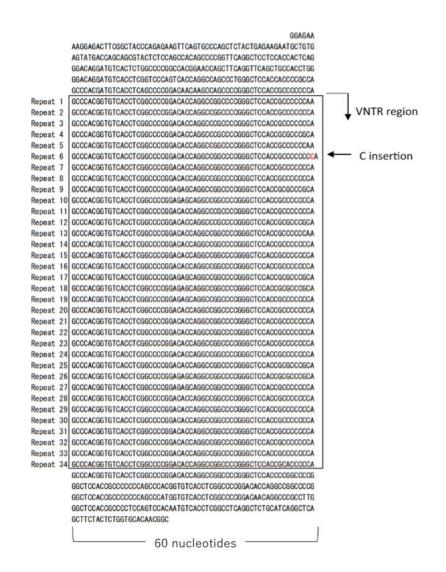

Example of a 'difficult' region – *TOMM40*

SBB cleanly sequences through poly-T repeat locus


Another similar region nearby

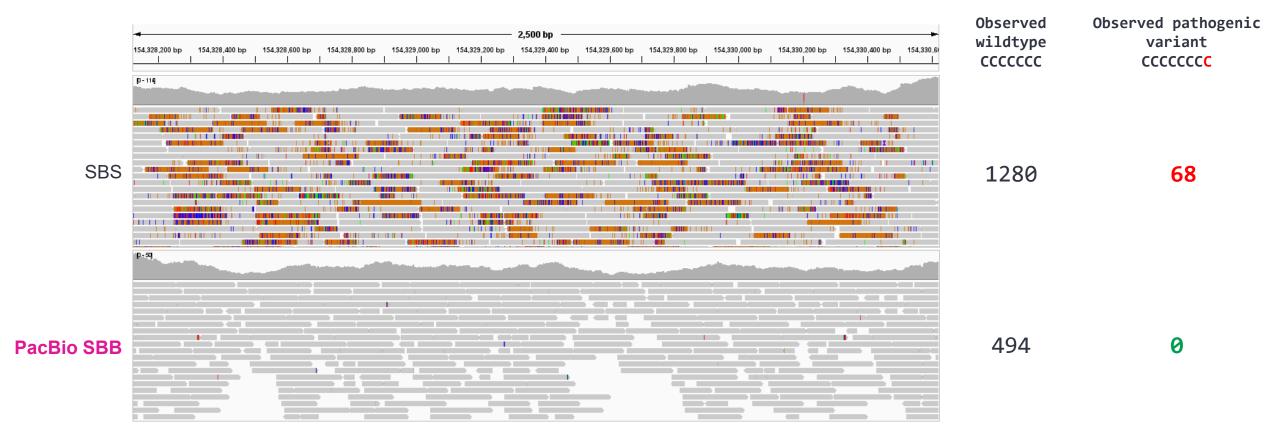
No high-quality reads
No variants called


Another similar region nearby



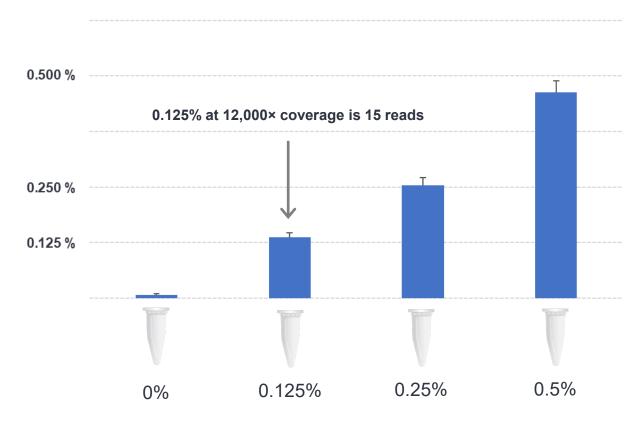
SBB correctly sequences through lengthy C/G repeats

Example Mucin 1 (MUC1) kidney disease



Sequencing performance on a healthy control sample

SBB did not observe spurious mutant variants in CHM13

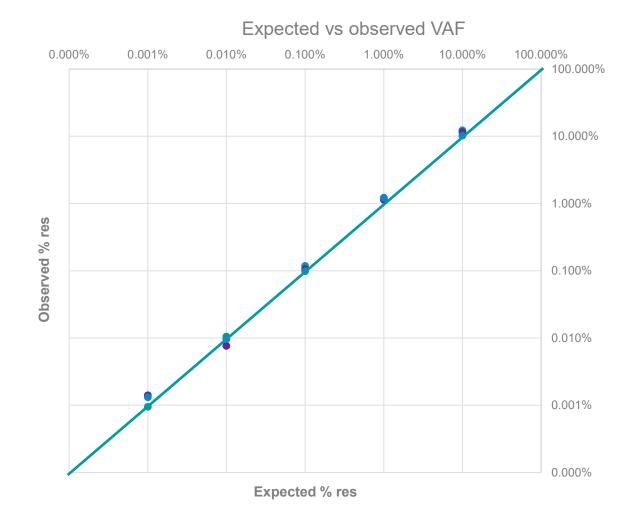


Observed vs expected ctDNA at low variant allele frequency

Variant allele percent shows good linearity, even without use of UMIs

High sensitivity and specificity down to 0.125%, even with modest (<12,000×) coverage

Controls and reference materials


Seraseq® ctDNA Mutation Mix v2

26

How low can SBB go without UMIs?

Tuberculosis amplicon shows near perfect linearity from 10% to 0.001%

	Res (C) counts	WT (G) counts	Total # counts	Observed % res
10%_rep1	2580549	18479388	21,059,937	12.2534%
10%_rep2	2998687	23062382	26,061,069	11.5064%
10%_rep3	743168	6508219	7,251,387	10.2486%
1%_rep1	76912	6388097	6,465,009	1.1897%
1%_rep2	46152	4025690	4,071,842	1.1334%
1%_rep3	65964	5334716	5,400,680	1.2214%
0.1%_rep1	22836	19283363	19,306,199	0.1183%
0.1%_rep2	8121	7646655	7,654,776	0.1061%
0.1%_rep3	6505	6587930	6,594,435	0.0986%
0.01%_rep1	1164	11078726	11,079,890	0.0105%
0.01%_rep2	197	2579126	2,579,323	0.0076%
0.01%_rep3	1030	10684737	10,685,767	0.0096%
0.001%_rep1	171	18047826	18,047,997	0.0009%
0.001%_rep2	117	8328474	8,328,591	0.0014%
0.001%_rep3	786	59804418	59,805,204	0.0013%

Where to from here for SBB?

Today

- Taking applications for collaboration; run your samples in our lab on SBB
- Visit our suite or <u>www.pacb.com/sbb</u>

Tomorrow

• Thurs, June 9, 8:00–8:30 am: Advancing NGS accuracy by an order of magnitude Jennifer Stone, PhD, Vice President, Segment Marketing

Late Q3

Formal external beta commences; more information to be shared at ASHG

1H 23

On track for platform commercial availability

